Photo-catalysis research groupHomeScienceBusinessMediaProjectsTeamPublicationsGalleryNewsOpeningsContact

One-dimension-based spatially ordered architectures for solar energy conversion

2015-04-10

Abstract

The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more
manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

Siqi Liu, Zi-Rong Tang, Yugang Sun, Juan Carlos Colmenares and Yi-Jun Xu. Chemical Society Reviews (Front Cover Page), 44 (2015) 5053 — 5075

http://​pubs​.rsc​.org/​e​n​/​c​o​n​t​e​n​t​/​a​r​t​i​c​l​e​l​a​n​d​i​n​g​/​2015​/​C​S​/​C​4​C​S​00408​F​#​!​d​i​v​A​b​s​tract 

Consider following us on social media   Link to Instagram      Link to LinkedIn      

Sign-up for our science Newsletter

website © jjmh.pl
HomeScienceBusinessMediaProjectsTeamPublicationsGalleryNewsOpeningsContact