HomeBersticScienceBusinessProjectsTeamPublicationsNewsCareerContact

Titania/​chitosan – lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light

2021-10-29

Abstract

Developing functional materials from biomass is a significant research subject due to its unique structure, abundant availability, biodegradability and low cost. A series of chitosan – lignin (CL) composites were prepared through a hydrothermal method by varying the weight ratio of chitosan and lignin. Subsequently, these CL composites were combined with titania (T) to form a nanocomposite (T/CL) using sol – gel and hydrothermal based methods. T/CL nanocomposites exhibited improved photocatalytic performance in comparison with sol – gel and hydrothermally prepared pristine titania (SGH-TiO2), towards the selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (Bnald) under UV (375 nm) and visible light (515 nm). More specifically, the 75T/CL(25 : 75) nanocomposite (a representative photocatalyst from the 75T/CL nanocomposite series) showed very high selectivity (94%) towards Bnald at 55% BnOH conversion under UV light. Whereas, SGH-TiO2 titania exhibited much lower (68%) selectivity for Bnald at similar BnOH conversion. Moreover, the 75T/CL(25 : 75) nanocomposite also showed excellent Bnald selectivity (100%) at moderate BnOH conversion (19%) under visible light. Whereas, SGH-TiO2 did not show any activity for BnOH oxidation under visible light. XPS studies suggest that the visible light activity of the 75T/CL(25 : 75) nanocomposite is possibly related to the doping of nitrogen into titania from chitosan. However, according to UV-visible-DRS results, no direct evidence pertaining to the decrease in band-gap energy of titania was found upon coupling with the CL composite and the visible light activity was attributed to N‑doping of titania. Overall, it was found that T/CL nanocomposites enhanced the photocatalytic performance of titania via improved light harvesting and higher selectivity through mediation of active radical species.

{IMG_TITLE}

A. Khan, M. Goepel, W. Lisowski, D. Łomot, D. Lisovytskiy, M. Mazurkiewicz-Pawlicka, R. Glaser, Magdalena Warczak, and J.C. Colmenares. RSC Advances11 (2021) 34996 – 35010. OPEN ACCESS!!!

https://​pubs​.rsc​.org/​e​n​/​c​o​n​t​e​n​t​/​a​r​t​i​c​l​e​l​a​n​d​i​n​g​/​2021​/​R​A​/​d​1​r​a​06500a

Consider following us on social media       Link to Instagram             Link to LinkedIn            

Sign-up for our science Newsletter

website © jjmh.pl
HomeBersticScienceBusinessProjectsTeamPublicationsNewsCareerContact